

German International Abitur^{*} Mathematics Curriculum

*Diploma from German secondary school qualifying for university admission

Semester	Content
	Like Calculus I and parts of II Discrete Relations Infinite sequences and series
11 1 st semester	Limits Nature of limits Calculate limits in simple applications Using limits for determining numbers (e.g. e)
	 Derivatives Continuity, monotony Techniques of differentiation and derivatives of higher grades Graphing Calculate and apply turning points, inflections points Min-Max-Problems Chain rule Differentiation of rational functions Applications to technical, physical and economic problems
	 Fundamental Theorem of calculus
	Like Calculus II and Linear Algebra I
11 2 nd semester	Integrals Techniques of integration Chain rule Applications to area, volume and physics Infinite integrals

1

	 Functions Methods to determine zeroes and asymptotes Drawing graphs of functions, also with CAS Vectors Systems of linear equations vectors in R3 , Geometry of lines in R3
12 1 st semester	IntegralsIntegrals of exponential functions
	 Differential equations Rate of change Like Vectors Calculus Geometry of lines and planes in R3 II, Linear Intersection, relative position, angles and distance of lines and planes Algebra I
12 2 nd semester	 Probability and Statistics Descriptive statistics Measure of central tendency Probability Discrete and continuous distribution functions Mathematical expectation and variance Like Probability Estimation hypothesis testing and Confidence interval Statistics Binomial distribution Pinary classification