

German International Abitur^{*} Physics-Curriculum

* Diploma from German secondary school qualifying for university admission

Semester	Content
	Electric fields and interaction Electric field and electric charge • Electric charge and electric field strength • The uniform electric field and its interaction with punctiform charges $\Rightarrow E = U/d$ • student's presentation (engl.): electrostatics in the baroque era Capacitors • Capacity, charging and discharging capacitors: $Q = C \cdot U$ • Dependency of the capacity of a capacitor from its configuration: $\Rightarrow C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d}$ • Capacitor to store energy: $E = \frac{1}{2} C \cdot U^2$ • Series an parallel connection of capacitors:
11 1 st semester	$\Rightarrow \frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} \text{ and } C = C_1 + C_2 + C_3$
	Applications in the uniform electric field
	 student's presentation (engl.): Millikans experiment
	Electrons in a longitudinal electric field: Accelerating electrons in a Braun
	• tube (cathode ray tube).
	• Coulombs law: $F = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2}$
	Comparison between electric and gravitational field
	Charged particles in fields and electromagnetic induction
	 Fields of permanent magnets, of straight conductors (Oersteds experiment) of colls and of the conth
	experiment), of coils and of the earthLorentzforce on conductor carrying a current and on free charged
	particles (electron and ions): $F_L = B \cdot I \cdot s$ and $F_L = B \cdot q \cdot v$
	 Student's presentations (engl.): Hall-effect, Electron microscopes, Particle accelerators.

	 Determination of the specific charge of the electron: e/m (experiment) Mass spektrograph and Wien-Filter (speed-filter in rectangled electric-and
11 2 nd semester	magnetic fields) Electromagnetic induction Induction through motion resp. change of area: $(V_{ind} = n \cdot B \cdot d \cdot v = n \cdot B \cdot \dot{A})$ General law of induction: $V_{ind} = -n \cdot \dot{\Phi} = -(n \cdot B \cdot \dot{A} + n \cdot \dot{B} \cdot A))$ (Faraday) Lenz' law (conservation of energy): application eddy currents. Inductivity of a long coil. self-induction (Lenz): $V_{ind} = -L \cdot \dot{I}$ How does a generator and a transformer work Alternating current Justification, how the phases of current $I = I(t)$ and Voltage $V = V(t)$ behave, in case of a resistor, a capacitor and a coil(ideal case) Electric work: $W = \int_0^T P_t dt = \frac{1}{2} \cdot \hat{P} \cdot T = \frac{1}{2} \cdot \hat{I} \cdot \hat{U} \cdot T$ Dependency of the frequency of the AC-resistors: $X_c = \frac{1}{\omega \cdot c} X_L = \omega \cdot L$ R-L-C in series: impedance $Z = \frac{U_{eff}}{I_{eff}} = \sqrt{R^2 + (X_L - X_C)^2}$ mit $I_{eff} = \frac{U_{eff}}{Z}$ reactance: $X = \omega L - \frac{1}{\omega c}$, $\tan \varphi = \frac{X_L - X_C}{R} = \frac{\omega L - \frac{1}{\omega c}}{R} = \frac{X}{R}$ Mechanical oscillations Simple harmonic motions: definition, requirements, differential equation and its solution:: $-k \cdot s_t = m \cdot \ddot{s}_{(t)}$ (diff. eq. with solution: $s_{(t)} = s \cdot \sin \omega t$)
12 1 st semester	Resonance: Connection between exctation-and eigen-frequency, conditions for resonance Oscillating circuit Build-up of a oscillating circuit Description and explanation of the electrodynamic reasons for the appearance of oscillations, incl. energy Analogies between the mech. harmonic oscillator and the osc. circuit: $\ddot{Q} = -\frac{1}{C \cdot L} \cdot Q$ (diff. eq.), solution: $Q_{(t)} = \hat{Q} \cdot \sin \omega t$ leads to \RightarrowThomsons equation of oscillations $T = 2\pi \sqrt{LC}$

r.

	 Waves Wave as a spatiotemporal periodic process Velocity of waves Longitudinal waves, transversal waves: characteristics standing waves Student's presentation: Resonance and Kundt's tube (engl.). Student's presentation: Huygens' priciple (engl.), Interference in water-and light-waves Quantum physics The photoelectric effect ⇒ dualism of wave and particle*. Einsteins equation: E = h·f (h: Planck constant)
	 Interference: single slit and grid Double-slit experiment with single photons and single particles (de Broglie-wavelength) ⇒ quantumobjects*
12 2 nd semester	 Quantum physics of the atomic shell Experiments of Rutherford and Franck-Hertz Line spectrum of the H-atom Nuclear physics Radioactive decay (α, β, γ), inkl. excited atomic daughter-cores (γ-rays: quantum physics of the atomic core), neutrinos, 4 natural radioactive series Fisson and fusion of atomic cores Mass defect (incl. Einsteins formula: E = Δm · c²) and binding energie ⇒calculating of the released energy: fission-and fusion Nuclear reactions and applications (Ra-Be-source for neutrons) Radiation protection

February 2014